DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

DIGITAL NOTES
ON
FORMAL LANGUAGES AND AUTOMATA
THEORY

R22A0510

B.TECH IIYEAR-II SEM
(R22) REGULATION

(2024-25)

Prepared by K.CHANDUSHA

MALLAREDDY COLLEGE OF ENGINEERING &TECHNOLOGY

(Autonomouslnstitution-UGC,Govt.ofIndia)

Recognizedunder2(f)and12(B) ofUGC ACT1956
(AffiliatedtoJNTUH,Hyderabad, ApprovedbyAICTE-AccreditedbyNBA&NAAC—A’Grade-
1SO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad—500100, TelanganaState, India

IlYear B.Tech.CSE-11Sem L/T/P/C
3/1/-14
(R22A0510)FORMALLANGUAGEANDAUTOMATA THEORY
COURSEOBJECTIVES:

Understandmathematicalmodels(finiteautomata)forlanguageprocessing.
ExplainRegularExpressionsandFiniteAutomataConversions.
UnderstandGrammarsforRegularandContextFreeLanguages.
LearnContextFreeGrammarNormalFormsandPushDownAutomata.
ExplainComputationaltheoryanddifferentmodels.

LA A

UNIT I

Fundamentals: Strings, Alphabet, Language, Operations, Finite state machine,
definitions, finite automaton model, acceptance of strings and languages,
deterministic finite automaton and nondeterministic finite automaton, transition
diagrams and language recognizers.

Finite Automata: NFA with € transitions - significance, acceptance of languages.
Conversions and Equivalence: Equivalence between NFA with and without €
transitions, NFA to DFA conversion, minimization of FSM, equivalence between
two FSM’s,Finite Automata with output- Moore andMealy machines.

UNIT 11
RegularLanguages:Regularsets,regularexpressions,identityrules,Constructingfinite

automata for a given regular expressions, Conversion of finite automata to Regular
expressions,Pumping lemma of regular sets,closure properties of regularsets.

UNIT I

Grammar Formalism: Introduction, Regular grammars-right linear and left
linear grammars, equivalence between regular grammar and FA, inter conversion,
Context free grammars- Derivation trees, sentential forms, Right most
andleftmost derivation ofstrings.

UNIT IV

Optimization and Normalization: Ambiguity in context free grammars,
optimization of context free grammars, Chomsky normal form, Greibach normal
form, Pumping Lemma forContext FreeLanguages,Enumerationofproperties
ofCFL.

Push Down Automata: Push down automata, definition, model, acceptance of CFL,
Acceptance by final state and acceptance by empty stack and its equivalence,
equivalenceof CFLandPDA, interconversion,IntroductiontoDCFLandDPDA.

Contextsensitivegrammars,languagesandLinearbounded Automata(Definitions)

UNITV
Turing Machine:Unrestrictedgrammars, Turing Machine-definition,model,design

of TM, computable functions, Turing recognizable (Recursively enumerable) and
Turing- decidable (recursive) languages and their closure properties, Church’s
hypothesis, counter machine, types of Turing machines.

Computability Theory: Chomsky hierarchy of languages, LR(0) grammar,
decidability of problems, Universal Turing Machine, un decidability of posts
correspondence problem, Turing reducibility, definition of P and NP problems, NP
complete and NP hard problems.

TEXTBOOKS

1. JohnE.Hopcroft,RajeevMotwaniandJeffreyD.UlIman, Introductionto
AutomataTheory, Languages,andComputation, Pearson Education
Asia.

REFERENCEBOOKS:

1. Harry R. Lewis andChristos H. Papadimitriou, Elements oftheTheory
of Computation, Pearson Education Asia.
2. DexterC. Kozen,Automata andComputability,Undergraduate Texts
in ComputerScience, Springer.
3. MichaelSipser,Introduction to the Theory of Computation,PWS Publishing.
4. JohnMartin,Introduction to Languages andTheTheoryofComputation,
TataMcGrawHill.

COURSEOUTCOMES:
Bytheendofthiscourse,studentswillbeableto

DesignFiniteAutomatamodelsforlanguageacceptance.
ConstructRegularExpressionsandequivalentautomatamodels.
FormulateGrammarsfordifferenttypesofformallanguages.
RepresentNormalFormsanddesignPushDownAutomata.
ExperimentwithandAnalyzedifferentComputationalmodels.

ok e

INDEX

5. No Unit Topic Page no
1 Strings, Alphabet, Language, Operations -9
2 Finite state machine, 10-15
3 I Finite Automata: DFA NFA With € transitions 16-21
4 Conversions and Equivalence : 22-27
5 NFA to DFA conversion, minimization of FSM, 28-12
equivalence between two FSMs S
6 Finite Automata with output 46-52
7 I Regular Languages: Conversion, Pumping lemma of 53.58
regular sets
8 Pumping lemma of regular sets 59-64
9 FA:RLG,LLG, Sentential forms 63-72
10 Context Free Grammars:CNF,.GNF 7393
1
i Pumping Lemma for Context Free Languages. 04-107
Enumeration of properties of CFL
12 Equivalence of CFL and PDA, inter conversion Push 108-112
a nr - L
Down Automata, LBA,CSL
Turing Machine: Church’s hypothesis, counter
13 : .) [13-115
v machine, types of Turing machines
14 LR(0) grammar, decidability of, problems,UTM,P 116-122

and NP Problems

UNIT-1

After going through this chapter, you should be able to unaerstana ;

s Alphabets, Strings and Languages
o Mathematical Induction

o Finite Automata

o Equivalence of NFAand DFA

o NFAwith ¢ - moves

11 ALPHABETS, STRINGS & LANGUAGES
Alphabet
Analphabet, denoted by 3 , is afinite and nonempty st of symbols.

Example:
. If y is an alphabet containing all the 26 characters used in English language, then

y is finite and nonempty set,and £ = {a,b,c,...., 2}
2. X ={0,} isanalphabet.
3, ¥ ={1,23,.} isnotanalphabetbecauseitisinfinite.
4, 7 ={} isnotanalphabet because it is empty.

String
A string is a finite sequence of symbols from some alphabef.
Example :

"xyz " isastring over an alphabet T = {a,b,¢, ..., 2} . Theempty stringor null string is
denoted by .

FORMAL LANGUAGES AND AUTOMATA THEORY Page 6

Length of a string

The length of a string i the number of symbols in that string. If w is a string then its length
isdenoted by | w]|.

Example :

I w=abed , then length of w is | w|= 4
2. n=o010 isastring then|n|= 3
3. e isthe empty string and has length zero.

The set of strings of length K (K > 1)

Let 3 beanalphabetand £ = {a, b}, thenall strings oflength K (K > 1) isdenoted by 7K,
£X <{w:wisastring of length K, K > 1}

Example:
l. Z={ab}, then
£ ={a,b},

* = {aa,ab, ba,bb},
%' = {aaa,aab,aba,abb baa, bab,bba,bbb}
|Z'|= 2 = 2" (Number of strings of length one),
| 2| = 4 = 2% (Number of strings of length two), and
|2%|= 8 = 2 (Number of strings of length three)
2. §={0,1,2} ,then §? ={00,01,02,11, 10,12,22,20,21} ,and | §?|= 9 = 3?

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by
w,w, . In other words, we can say that w, is followed by w, and | wyw,| = | w,| + | w,|.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 7

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
String v = abe ,then a,ab,abc are prefixes of w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, if a
String w = abe ,then ¢,bc,abe are suffixesof y.

Astring 4 isaproper prefix or suffix of a string w ifand onlyif a = w.

Substrings of a string

A string obtained by removing a prefix and a suffix from string y is called substring of w . For
example, if astring v = gh¢ ythen p isasubstring of . Every prefix and suffix of string y is

asubstring of , but not every substring of w is a prefix or suffix of w . For every string , both
w and ¢ are prefixes, suffixes, and substrings of w.

Substring of w =w - (one prefix)-(one suffix).
Language

A Language L over g, is a subset of s, i. e, it is a collection of strings over the
alphabet 3. ¢ ,and {e} are languages. The language ¢ is undefined as similar to infinity and
{¢} is similar to an empty box i.e. a language without any string.

Example:

1. L, ={01,0011,000111 } isalanguage over alphabet {0,1}
2. L, ={€,0,00,000 ,..} isalanguageoveralphabet {0}

3. L, ={0""2" ;n > 1} isalanguage.
Kleene Closure of a Language

Let 7 bealanguage over some alphabet 5. Then Kleene closure of 1, isdenoted by 7, * and
itis also known as reflexive transitive closure, and defined as follows :

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 8

L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two,}

-Ue =100l uLu...

K=0
Example:

l. Z={a,b} andalanguage ; over y.Then
F=rulvulu..
L'={g
L' = {a,b},

I? = {aa,ab,ba,bb} and so on.
So, L*={e,a,b,aa,ab,ba,bb..}
2. §={0}, then §* = {€,0,00,000 ,0000 ,00000 ,....}

Positive Closure

If 3 isanalphabet then positive closure of 5. is denoted by 5+ and defined as follows:
£t = 1" - {g = {Set of all words over T excluding emply string &}
Example :
if £ = {0} ,then £* ={0,00,000,0000 ,00000 ...}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point for aninduction. Here, prove that the resultis true forsomen=0or 1.
Induction Hypothesis : Here, assume that the result is true forn =k..
Induction step : Prove that the result is true for somen=k+1.

Proof of induction step : Actual proof.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 9

1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
input alphabet, a read - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1,

¥ § |+— Input Tape

f*— Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol 'y is used at the leftmost cell and the symbol '$'is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read either from left - to- right or
right - to -left one cell at a time. The head can't write and can't move backward. So, FA can'
remember its previous read symbols. This is the major limitation of FA.

Deterministic Finite Automata (DFA)

A deterministic finite automata M can be described by 5-tuple (Q, Z, 3, g, F) , where

1. Qis finite, nonempty set of states,

2. y isaninputalphabet,

3. & istransition function whichmaps Q x£ — Q i.¢. the head reads asymbol in ts present
state and moves into next state.

4. q, €Q,knownasinitial state

5. FcQ,knownassetoffinal states.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 10

Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F),where

I Qisfinite, nonempty set of states,

2. ¥ isaninputalphabet,

3. § istransition function whichmaps Q x - 2° i.e., the head readsa symbol inits present
state and moves into the set of next state (s) . 22 is power set of Q,

4. q, €Q,knownasinitial state, and

5. FcQ,known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FA has following states :

1. Initial state : Initial state is an unique state ; from this state the processing starts.

2. Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

3. Non-final states : All states except final states are known as non - final states.

4, Hang-states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generally

denoted by ¢ . For example, consider a FA shown in figurel.2.

FIGURE 1.2: Finite Automata

g, istheinitial state, q,, g, are final states, and ¢ isthe hang state.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 11

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, Z, 8, g, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

I. Theinitial state is represented by a state within a circle and an arrow entering into circle as

shown below :
(Inital state 4,)

2, Final state is represented by final state within double circles :
(Final state g,)

3. Thehang state is represented by the symbol '¢' within a circle as follows :

4. Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol ‘a', then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose pis the
present state and q is the next state oninput - symbols 'a,' or 'a,' or...or 'a," thenthisis

represented by 9 Byl 0

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Difrect /\ Indirect

(Represented by §) (Represented by §')

Direct transition Function (5)

When the input is a symbol, transition function is known as direct transition function.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 12

Example : §(p,a) = q (Where pis present state and q is the next state).
Itis also known as one step transition.

Indirect transition function (5')
When the input is a string, then transition function is known as indirect transition function,
Example : 6'(p,w) =g, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then s (p, ax)=35(q x) andif &' (p, x) = q,then &' (p, xa) =8'(q, a)
2. Fortwostringsxandy; d(p,xy) =6(8(p,x),y),and 8'(p,xy) =6'(6'(p,x),»)
Example :1. ADFA M =({9,,9:,92.9,),{0,1},8,9,.(9,}) isshownin figurel.3.

FIGURE 1.3 : Deterministic finite automata

Where § is defined as follows :
0 1
> G 0 9,
q, 9 g
9, ' G
q, q, G

2. ANFAM | =({q4.9:,92.9 1}, {0,1},8,9,.{q ;}) isshownin figure] 4.

0,1

o

FIGURE 1.4 : Non - deterministic finite automata

FORMAL LANGUAGES AND AUTOMATA THEORY Page 13

3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state g, , and third ends in final

state ¢, hence string "011011" is accepted by third execution.

Difference between DFA and NFA

Strictly speaking the difference between DFA and NFA lies only in the definition of § . Using this
difference some more points can be derived and can be written as shown :

DFA

NFA

1. The DFAis 5 - tuple or quintuple
M =(Q,%,8,q9,,F) where
Q s setof finite states
5. is set of input alphabets
8:0xZto Q
g, istheinitial state
Fc O issetof final states

The NFA is same as DFA except in the
definition of §.Here, § is defined as follows:

§:0x(2Ue) tosubset of ¢

2. There can be zero or one transition
from a state on an input symbol

There can be zero, one or more transitions
from a state on an input symbol

3, No e- transitions existi.e., there
should not be any transition ora
transition if exist it should be on an

input symbol

¢ transitions can exist i. e., without any input
there can be transition from one state to
another state.

4. Difficult to construct

Easy to construct

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 14

The NFA accepts strings a, ab, abbb etc. by using ¢ path between ¢, and ¢, we can move
from g, stateto g, without reading any input symbol. To accept ab first we are moving from g,

to g, reading a and we canjumpto g, state without reading any symbol there we accept b and
we are ending with final state so it is accepted.

Equivalence of NFAwith < - Transitions and NFA without ¢ Transitions

Theorem :Ifthe language L is accepted by an NFAwith - transitions, then the language L,
is accepted by an NFAwithout e transitions.

Proof : Consider an NFA N'with ¢ - transitions where N =(Q, Z, 8, ¢,, F)
Constructan NFA N, without ¢ transitions N, =(Q,, £, 3, ¢,, F)
where (=0 and

po) FY {q,} if €~ closure(q,) contains a stateof F
CAF otherwise

and 8, (g,a) is 8 (g,a) forqinQandain 3.

Consider anon - empty string o . To show by induction | o | that §,(g,, 0) = 5 (45,0)
For @ =¢, the above statement is not true, Because
0,(90:€)={q0} »
while 8(qq.€)=€ ~closure (q,)

Basis :
Start induction with string length one .
i.e., lo|=1

Then wis asymbol a, and &, (g, ,a)=6‘(q0 ,a) by definitionof §,.

Induction : lo|>1
Let o = xy forsymbolain 3.

Then 0,(q9,xy)=0,(0,(405%),)

FORMAL LANGUAGES AND AUTOMATA THEORY Page 15

Calculation of -closure :

€-closure of state (e-closure (q)) defined as it is a set of all vertices p such that there is a
path fromqtop labelled ¢ (including itself).

Example :
Consider the NFA with e - moves

e~ closure (¢,) = {4,,4,, 9, 4, }
e~ closure (¢,)={ g,,9,, 4, }

e - closure (¢,)= {4,, ¢, }

e~ closure (¢,) = {¢, }

Procedure to convert NFA with - moves to NFA without - moves

Let N =(Q, £,8,4,, F)isaNFAwith « movesthenthereexists N'=(0,e,8,q,, ") without
e moves

1. Firstfind e - closure of all states in the design.

2. Caleulate extended transition function using following conversion formulae.
0 §(g, x)=e- closure §(3 (g, e), x)
M &(q,e)=e - closure(q)

3. Fisasetofall states whose ¢ closure contains a final state in F.

Example 1 : Convert following NFAwith & moves to NFAwithout & moves.

Solution : Transition table for given NFAis

§ a b
>4, 4,
q: @ ¢ QQ.

¢ % ¢

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 16

() Finding < closure :
e~ closure (g,) = {go}
- closure (¢,) = {q,, 4.}
e closure (g,) = {¢,}

(i) Extended Transition function :
5 a b

—> 4, {4),9:} ¢

] {g,}
¢ {q:}

5 (g,,a) =€ ~closure (3 (8(g,.€),a))

= e—closure (& (e—closure (q,) , a))
= e—closure (8 (gq,, a))

= e—closure (g,)

={4:,9,}

8 (o» b) = ~closure (6(8(q0,€),b))
=e— closure(8(e- closure (q,), b))
=€~ closure(d (q,, b))
=e - closure($)

=6

8 (g,-a) =€~ cIasure{B(é (g,,€) a))
=e~— closure(d (€~ closure(q,), a))
=€~ closure(d ((4,,9,), @)
=e— closure(d (q,, a) Vo(q,, a))

=e— closure ()

=4

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 17

3 (q,, b) = - closure (5 (5 (g,, ©), b))
= €— closure (8 (€— closure(q,), b))
= €~ closure (8 ((¢q,,q,), b))
= e~ closure (8 (q,,b) U & (q,, b))
= €= closure (q,)

={4q,}

8 (g,, a) = e~ closure (8(3(g,, €), a))
= €— closure (3(€—closure(q,), a))
=€ —closure (6(q,,a))
= &— closure (9)
=0

5 (g, b) = e~ closure (8 (8 (g, ©), b))
= €~ closure (8 (e-closure (q,), b))
= €~ closure (& (q,, b))

= e~ closure (g,)

={q,}

(iii) Final states are ¢, g,, because
e— closure (g,) contains final state
€ - closure (g,) contains final state

(iv) NFAwithout € movesis

FORMAL LANGUAGES AND AUTOMATA THEORY Page 18

2.1 FINITE STATE MACHINES (FSMs)

A finite state machine is similar to fnite automata having addiional capability of output,

A model of finite state machine is shown in below figure

Pinite control
Input reading Quput
head roducing head
y $| (v E
' |
)
Input tape Output tape

FIGURE : Model of FSM

2.1.1 Description of FSM

A finite state machine is represented by 6 - tuple (0,3,4,5 Ayq,) Where
. Qisfinite and non - empty set of states,

2. ¥ isinput alphabet,
3. A isoutputalphabet,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 19

4. § istransition function which maps present state and input symbol on to the next state or

OxEL-Q0,
5. 4 isthe output function, and

6. ¢,eQ,istheinitial state.

2.1.2 Representation of FSM

We represent a finite state machine in two ways ; one is by transition table, and another isby
transition diagram . In transition diagram , edges are labeled with Input/ output.

Suppose , in transition table the entry is defined by a function F, so for input ¢, and state g,
F(g,, a) = (8(g,, a), Mag;,a)) (where § is tramsition function, 3, is output function.)

Example 1 : Consider a finite state machine, which changes 1's into 0's and O'sinto 1's
{ 1's complement) as shown in below figure .

Transition diagram :

(=18
—

FIGURE : Finite state machine

Transition table :

Inputs
0 I
Present Next State (NS) | Output Next State (NS) Output
State(PS)
q q q 0

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 20

Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

CORNNN C)
@ 11
T

FIGURE : Finite State machine

Suppose, input is 10100. What is the output ?
Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs
CE R CE OSSO N &G
Outputs
So, the output is 01100.

2.2 MOORE MACHINE

If the output of finite state machine is dependent on present state only, then t}ns model of
finite state machine is known as Moore machine,

A Moore machine is represented by 6-tuple (0, £,A,4, 4,4,), where
@ is finite and non-empty set of states,
y, is input alphabet,
A isoutput alphabet,
& 1s transition function which maps present state and input symbol on to the next state or
OxL->0,
2 is the output function whichmaps 9 - A, (Present state —» Output), and
4, € 0 ,is the initial state .

B

(= N

If Z (1), q () are output and present state respectively at time 7 then
Z(t) = (g ().
Forinput ¢ (null string), Z (t) = A (initial state)

FORMAL LANGUAGES AND AUTOMATA THEORY Page 21

Consider three LSBs of Input
000 (X)
001 (X)
010 (X)
011 (X)
100 (X)

101
10
LT (XY)

G 110/3@
| &)

2
H

O Wwhah O a0

Transition diagram :

0

x/c

FIGURE : Moore Machine

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let M, and
M, be equivalent Moore and Mealy machines respectively. The two outputs 7, (w) and 7, (w)
are produced by the machines M, and M, respectively for input string w . Then the length of

1, (w) is one greater than the length of 7,(w), 1e.

OIS IGIES

The additional length is due to the output produiced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ty(w)=xTy(w) . '

FORMAL LANGUAGES AND AUTOMATA THEORY Page 22

It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input ¢) Moore machine without reading the input. |

Conversion of Moore Machine to Mealy Machine
Theorem : If M, =(Q.2,A,8,2,9,) isaMoore machine then there exists a Mealy machine
M, equivalentto M,. .
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine M, , and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M,)
Let M, =(Q,%,A,8,4,q,) whereall terms 0,3, A, 8, g, are same as for Moore machine and
)’ is defined as following :
A (g,a) = A(B(g,a) forallg eQand 4 ¢ ¥

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine M, and
T;(w), T, (w) are outputs produced by Moore machine A, and equivalent Mealy machine 3,
respectively for input string w, then

Ti(w)=xT,(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation).

If we delete the output symbol x from 7, (w) and supposeitis 7' (w) whichisequivalentto

the output of Mealy machine. So we have,
T () = T(w)
Hence, Moore machine 4, and Mealy machine M, are equivalent.

Example 1: Constructa Mealy machine equivalent to Moore machine A, givenin following
fransition table.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 23

3. A remainsunchanged,
4. 3 isdefined as follows :

8" ({g,bl,a) = [8(g,a), A (g,a)], where § and), are fransition function and output
function of Mealy machine.

5.) isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :

A ([g.0) = b

6. g, istheinitial state and defined as [g,,5,], where ¢, is the initial state of Mealy machine and

b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g, ¢;, ¢5,...9, oninput q,, a,, a,,....a, and
produces outputs b, b,, b, ... b,, then M, entersthe states [g,, 4,1, (g1, 51, [925 55). - -+ [9,5 5]
and procuces outputs &), 5, b,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.

Therefore, Mealy machine A4, and Moore machine A, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine. :

FIGURE : Mealy Machine
Solution : Let M,=(02A8,4,4,) is a given Mealy machine and
M,=(0"%,A8"4"q,") betheequivalent Moore machine,
where

L Q' c{96:nL.[90- ¥} 191,71, L41, Y], (92,70 [95. ¥]} (Since, O € O x A)
2. T=1{01

FORMAL LANGUAGES AND AUTOMATA THEORY Page 24

3. A= {my}
4. g,'=[gy,y], Where g, is theinitial state and y isthe output symbol of Mealy machine,
5. ¢ isdefinedas following : :

For initial state{g,, y] :
8'(140,¥1,0) = [6(20,0),4(g0,0)] = [91,7]
6'([g0, ¥ 1) =[6(g0.0A(g0:01 =42, 7]
For state [g,,n] :
8 ([g;,), 0) = 5 (g, 0), A (g1, 0] = [g1,)]
8'([g1,n)1) = [8(q11Ma11I=lq2.m]
For state [g,,#]
8 ([, 71, 0) = [8(95, 0) 2 (g5, O)] = [, 7]
8 ({2511 D) =[8(g2: 1) A (g2. D) = [92,]
For state [g;, y] :
8 ([, ¥ 0) = [8 (g1, 0.1 (91, O] = 141,71
8 (1, 1. D = 18 (g, 1A (9, DI = L4257
For state {g,, ¥] :
8' (142,51, 0) = [® (92, 0), % (¢2,9)] = {g,, 7]
8" ([g35 71, 1) = [8 (g2 D A (425 D] = [42, V]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined asfollows:
Algoy1=y
AMlg.nl=n
Nlgnl = n
Mlgyl=v
Mgyl =Y

FORMAL LANGUAGES AND AUTOMATA THEORY Page 25

2.5 EQUIVALENCE OF FSMs

Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Example :
Consider the FSM M, shown in figure (2) and FSM M, shown in figure (b).

w o QA

Figure (b)

Are these two FSMs equivalent ?
Solution :

We check this. Consider the input strings and corresponding outputs as given following :

input string Output by ¥, Output by A,
(1) 01 00 00

{2) 010 001 001
(3)0101 0011 0011
(4) 1000 - 0111 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same

task. But, A, hastwo statesand M, has four states. So, some states of M, are doing the same

FORMAL LANGUAGES AND AUTOMATA THEORY Page 26

task . e., producing identical outputs on certain input, Such states are known as equivalent states
and require extra resources when implemented.
Thus, our goal is to find the simplest and equivalent FSM with minimum number of states.

2.51 FSM Minimization

We minimize a FSM using the following method, which finds the equivalent states, and merges
these into one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,q,) over states are non - equivalent states
Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (go,;) *
(@ Do g, and g, produce same output ?
(0) Do g, and g, reachthe same states foreachinput ¢ €27
(¢) If answers of (a) and (b) are YES, then g, and g,are equivalent states and
merge these two states into one state [g,,¢,] and replace the all occurrences of
g, and g, by [g,,q,] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that,
Step 4 : Exit.

Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.

Inputs
: 0 1

Present Next State Next State

State(PS) (NS) (NS) Output
qo qo ‘11 0)
q, q, ‘N 1
q, g, 9, 1
g q, 4y 1

FORMAL LANGUAGES AND AUTOMATA THEORY Page 27

After going through this chapter, you should be able to understand :

Regular sets and Reqular Expressions
Identity Rules Unit-1I
Constructing FAfor a given REs
Conversion of FAto REs

Pumping Lemma of Regular sets

Closure properties of Regular sets

3.1 REGULAR SETS

A spectal class of sets of words over S, called regular sets, is defined recursively as follows.
(Klegne proves that any set recognized by an FSM is regular. Conversely, every regular set can
berecognized by some FSM.)

. Every finite set of words over § (including ¢, the empty set)is aregular set.

2. If Aand B are regular sets over §, then 4, p and AB are also regular.

3. IfSisaregularsetover S, then soisits closure S¥,

4. Nosctisregularunless itis obtained bya finite number of applications of definitions (1) to 3).

1.6, the class of regular sets over S is the smallest class containing all finite sets of words over §
and closed under union, concatenation and star operation,

Examples:

) Let £={a,b}then the st of strings that contain both odd number of a's and b's is a
regular set.

i) Let £ ={0,1} then the set of strings {01,10 } isaregular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent

the regular expressions.

Regular expressions are means to represent certain sets of strings in some algebraic
manner and regular expressions describe the language accepted by FA.

If 5 isanalphabet then regular expression(s) over this can be described by following rules.
Any symbol from Z.& and ¢ are regular expressions.

If » and r, are two regular expressions then union of these represented as , U r, or

n + r, isalsoaregular expression

If r, and r, are two regular expressions then concatenation of these represented as rr, is

also aregular expression.
The Kleene closure of a regular expression » is denoted by » * isalso a regular expression.

If r is aregular expression then (r) isalso a regular expression.

The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

Examples :

(1) If £ = {a,b},then

(a) aisaregularexpression (Usingrule 1)

(b) bisaregularexpression (Usingrule 1)

(¢) 4 + b isaregular expression (Using rule 2)

(d) »* isaregularexpression (Using rule 4)

(€) ab isaregular expression (Usingrule 3)

(® ab + b+ isaregular expression (Using rule 6)

(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin p .

(b) A language consists of all the words over {a, b} endingin pp.

(c) A language consists of all the words over {a, b} starting with aand endingin b.
(d) A language consists ofall the words over {a, b} having pp asasubstring.

(€) A language consists ofall the words over {a, b} ending in aab.

Solution :let £={a,b},and

All the wordsover £ = {e a, b, aa, bb, ab, ba, aaa, }=ZZ *or(a+b)*or(awb)*

FORMAL LANGUAGES AND AUTOMATA THEORY

=({g a,b,aa,bb,...})*

= {e a,b, aa, bb, ab, ba, aaa, bbb, abb, baa, aabb, ...}
= {All the words over {a, b} }

= (a + b) *

So, (a * +6*)* = (a + b) *
3.3 IDENTITIES FOR REs

The two regular expressions P and Q are equivalent (denoted as P = Q) if and only if P
represents the same set of strings as Q does, For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below
L. eR=Re=R

e'=¢ e isnull string

(#) =¢ ¢ isempty string.

OR=Rp=

o+=R=R

R+R=R

RR*=R*R=R'

(R)y =R

c+RR' =R’

(P+0)R=PR+0R

(P+Q) =(P'Q)=(P'+Q)

R'(e+R)=(e +R)R" = R’

2,
)
4.
3.
6.
1
8.
9.

sk e (e

(R+e) =R’

._.
=

etk =R
(PQ) P=P(QPY
RR+R=RR

[w—y
N W

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.

FORMAL LANGUAGES AND AUTOMATA THEORY

Arden's Theorem : Let P and Q be the two regular expressions over the input set 5. . The
regular expression R is given as

R=Q+RP
Which has aunique solutionas R = QP"

Proof : Let, P and Q are two regular expressions over the input string ¥, .
IfP does not contain ¢ then there exists R such that
R=Q+RP kL)
We will replace R by QP* in equation 1.
Consider R. H. S. of equation 1.
=0+QP'P
=0(c +P'P)
=QP e+ R'R=R’
Thus R=QF
is proved, To prove that R = QP"is a unique solution, we will now replace L.H.S. of equation 1
by Q + RP. Then it becomes
Q+RP
But again R can be replaced by Q +RP.
Q+RP=Q+(Q+RP)P
=(0+0P+ RP*
Again replace R by Q + RP.
=Q+0P+(Q+RP)P
=0+0P+0QP +RP’
Thusif we go on replacing R by Q + RP then we get,
Q+RP=0Q+QP+QP +....+0P' + RP"
=Q(e+P+P*+...P')+ RP"
From equation 1,
R=Q(e+P + P* +... + P') 4 RP™
Where i>0
Consider equation 2,

R=0(c+P+P*+. ..+ P)+ RP"
»

: R=QP' +RP*
Let wbe a string of length .

FORMAL LANGUAGES AND AUTOMATA THEORY

=£e,0,00,L,11,111,01,10,000.}
= { e, any combination of 0's, any combination of I's, any combination of
Oand 1}
Hence, L.H.S.=R.H.S.is proved.

3.4 RELATIONSHIP BETWEEN FA AND RE

There isaclose relationship between a finite automata and the regular expression we can show
this relation in below figure.

Canbe Regular Canbe
Converted expression converted to

NFA with
= moves

Can be Can be
converted converted to
NFA without
& Moves

FIGURE : Relationship between FAand regular expression
The above figure shows that it is convenient to convert the regular expression to NFAwith ¢
moves. Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR A GIVEN REs
Theoram :If » bearegular expression then there exists a NFAWith e -moves, which accepts L(r).
Proof: First we will discuss the construction of NFA. f with & -moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet 5.

Construction of NFA with ¢ - moves
Case 1:

M r=0

FORMAL LANGUAGES AND AUTOMATA THEORY

NFA M = ({s, £}, { }8, 5 {fD) asshownmrngurcl ()
(No path from initial state s to
reach the final state £7)
Figure 1 (a)

@ r=¢

NFA M = ({s},{ }, 8, s, {s}) asshowninFigure 1 (b)

. (The initial state s is the final state)

Figure 1 (b)
(i) » = a,foralla €2,
NFA M = ({s, f}, 2,8, 5, {f})
C a @ (One pathis there from initial state s
to reach the final state fwith label a.)
Figure 1 (c)
Case2: |r|=z1

Let » and r, be the two regular expressions over £,, £, and N, and N, are two NFA for
r, and r, respectively as shown in Figure 2 (a).

O # @

Figure 2 (a) NFAfor regular expression » and r,

FORMAL LANGUAGES AND AUTOMATA THEORY

Now let us compute for final state, which denotes the regular expression.
r2 will be computed, because there are total 2 states and final state is ¢, whose start state is g, .
ri= s oo P o))
=0(e)*)+0
=0+0
r! = 0 whichisa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the . €. from given DFA.

. Let g, betheinitial state.

. Thereareq,, g,.qs»qu--q, number of states.The final state may be some ¢, where j<n

. Let o, represents the transition from ¢, f0 g,.
. Calculate g, such that
g,=a,q,
If g, is a start state
q, = aj,. 'qj +e

5. Similarly compute the final state which ultimately gives the regular expression .

Example 1 : Construct RE for the given DFA.

Solution :

Since there is only one state in the finite automata let us solve for g, only.
90 =900+ qol+ €
qo=q,(0+1)+¢e

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
qo=q1+q,0+€
q; =qo0
42 =]
g3 =q,0+q;1+4;(0+1)

Letus solve g, first,
Go = q,1 4+ q,0+€
qo = 4,01+ qy10+€
Go = qo(01+10)+ € *R=Q+RP
go =€ (01+10)* = QP * where
go =(01+10)* R=q,,0=¢€,P=(01+10)

Thus the regular expression will be
r=(01+10)*

Since g, is a final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 8 : Show that the language L = {a' b"|i>0} is not regular.

Solution : The set of strings accepted by language L is,
L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb...}

Applying Pumping lemma for any of the strings above.

Take the string abb.

It is of the form uvw.

Where, |wv |<i|v]2]
To find i such that w'we L
Take i =2 here, then
w''w = a(bb)b
=abbb
Hence uv’w=abbb ¢ L

Since abbb is not present in the strings of L.
- Lisnot regular.

Example 9 : Show that L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let Lis regular by Pumping lemma. Let n be number of states of FA accepting L.

Step2: Let ;= 0" then |z|=n22.
Therefore, we can write z=uvw ; Where |wv|snfvE1.
Take any string of the language L= { 00, 0000, 000000..... }
Take 0000 as string, here u=0, v=0, w=00to find i such that wwel,
Take i =2 here, then
w'w= 0(0)?00

= (00000
This string 00000 is not present in strings of language L. S0 uv‘w¢ L.

-, Itisacontradiction.

3.9 PROPERTIES OF REGULAR SETS

Regular sets are closed under following properties.
1. Union
2. Concatenation

FORMAL LANGUAGES AND AUTOMATA THEORY

Kleene Closure
Complementation
Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or

R, U R, isalsoaregular set.

Proof : Let R and R, be recognized by NFA N, and N, respectively as shown in
Figurel(a)and Figurel(b).

FIGURE 1(b) NFA for regular set R,
We construct a new NFA N based on union of N, and N, asshown in Figure 1 (c)

FIGURE 1(c) NFAfor N, + N,
Now,
L(N) = € L(N,) € + e (N,) €
=€ R,€ + €R,e€
=R +R,
Since, Nis FA, hence L(N) isaregular set (language). Therefore, R, + R, isaregular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

2. Concatenation: If R and R, are two regular sets, then concatenation of these denoted

by R,R, isalso aregular set.
Proof : Let R, and R, be recognized by NFA N, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2{b) NFA for regular set R,
We construct a new NFA N based on concatenation of N, and N, asshownin Figure2(c).

FIGURE 2(c) NFA for regular set R R,
Now,
L(N) = Regular setaccepted by N, followed by regular set accepted by N, = R\R,
Since, L(N) isaregular set, hence R/R, is also a regular set.

Kleene Closure : If R isaregular set, then Kleene closure of this denoted by R*isalso
aregular set.

Proof: Let R isaccepted by NFA n shownin Figure 3(a).

FIGURE 3(a) NFA for regular set R

FORMAL LANGUAGES AND AUTOMATA THEORY

We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3(b) NFA for regular expression for R’
Now,

L(N)={e,R,RR,RRR.,.}
= r'

Since, L(N) is aregular set, therefore R" is aregular set.

Complement : If z is a regular set on some alphabet 3, then complement of g is

denoted by ° — R or % isalsoa regular set.
Proof : Let g be accepted by NFA N = (0,2,8,5,F). It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct anew NFA n/'based on p asfollows :
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N 'is shown in Figure 4(b)

FIGURE 4 (b) NFA

FORMAL LANGUAGES AND AUTOMATA THEORY

Now,
L(N')= {All the words which are not accepted by NFA N}
= { All the rejected words by NFA N}

=" -R
Since, L(N') isaregular set, therefore (" — R) isaregular set.

. Transpose : If Risaregular set, then the transpose denoted by g7, is also aregular set.
Proof : Let g beacceptedbyNFA N = (Q .2, ,5,/") asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If w isawordin g, then transpose (reverse) is denoted by ,,7 .
Let w = a,a,...a,
Then w” = a,a, ,...q

We construct anew) based on y using following rules :

(a) Change the all final states into non-final states and merge all these into one state and make it

(b) Change initial state to final state.
(c) Reverse the direction of all edges.
A is shown in Figure5 (b)

FIGURE 5(b) NFA N'for regular set g’

FORMAL LANGUAGES AND AUTOMATA THEORY

Let w = aya,...a, beawordin p,thenitis recognized by nr and
wl = a,a,_,..a, isrecognized by p- as shown in Figure5 (b)

In general, we say that if a word inR is accepted by n,andthen y' accepts 7.

Since, L(N") is aregular set containing all w? ;itmeans, L(N')= R .

Thus, R" isaregular set.

Intersection : if R and R, are two regular sets over ¥ , then intersection of these
denoted by R, n R, isalso aregular set.

Proof : By De Morgan's law for two sets 4 and B over R,
ANB=R*~(R*-A)U (R*-B))

SO,R " R, =Z*—((£*-R,)U(Z*-R,))

Let R, = (£*-R,) and R, = (Z*-R,)

So, R; and R, are regular sets as these are complement of R and R,.

Let R, =R, UR,

So, Ry isaregular set because it is the union of two regular sets R, and R,.
Let R, =Z*-R,

So, R isaregular set because it is the complement of regular set R;.
Therefore, intersection of two regular sets is also regular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS

— e S ————— e

After going through this chapter, you should be able to understand :

o Regular Grammar
s Equivalence between Regular Grammar and FA
e Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S) is said to be regular grammar iff the grammar is
right linear or left linear.
A grammar G is said to be right linear if all the productions are of the form

A-—>wB and/or A ->w where 4, BeV and 7.

A grammar G is said to be left linear if all the productions are of the form
A—>Bw and/or A —>w where 4,BeV and 7.

Example 1: The grammar

S - aaB | bbA | ¢

A - aAlb

B - bBla]e
isaright linear grammar. Note that ¢ and string of terminals can appear on RHS ofany production
and if non - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol onR. H. 8.
Example 2 :

The granmmar

S —» Baa| Abb | ¢

A - Aalb

B - Bbla] ¢
isaleft linear grammar. Note that ¢ and string of terminals can appear on RHS of any production

and if'non - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left most symbol onL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3:
Consider the grammar
S - aA
A - aBjb
B -~ Abla

Inthis grammar, each production is either left linear or right linear. But, the grammar is not either
Jeft linear orright linear. Such type of grammar is called linear grammar. So, a grammar which has
at most onie non terminal on the right side of any production without restriction on the position of
this non - terminal (note the non - terminal can be leftmost or right most) is called linear
grammar.

Note ’fhat the language generated from the regular grammar is called regular language. So, there
should be some relation between the regular grammar and the FA, since, the language accepted
by FAis also regular language. So, we can constructa finite autormaton givenaregular granmar.

42 FAFROM REGULAR GRAMMAR

Theorem : LetG=(V, T, P,S)be a right linear grammar. Then there exists a language L(G)
which is accepted by a FA. i e, the language generated from the regular grammar
is regular language.

Proof :Let ¥ =(qg,, g,,....) be the variables and the start state S=¢, Let the productions in
the grammar be ’
g > F G4
g - na

4 = 5%

9n "> ¥pqan

Assume that the language L(G) generated from these productions is w. Corresponding to each
production in the grammar we canhave a equivalent transitions in the FAto accept the string w.
After accepting the string w, the FAwill be in the final state. The procedure to obtain FA from
these productions is given below : ‘

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 1. ¢, which is the start symbol in the grammar is the start state of FA.

Step 2: For each production of the form

9 > wg,
the corresponding transition defined will be

an{qisw)“ 4
Step 3 : For each production of the form ¢, — w
the comesponding transition defined will be 8’ (g,, w) =g, ,where g, isthe final state,

As the string w € Z(G) is also accepted by FA, by applying the transitions obtained from
step] through step3, the language is regular. So, the theorer is proved.

Example 1 : Construct a DFAto accept the language generated by the following grammar

S - 014
A — 10B
B — 04|11

Solution :

Note that for each production of the form A -» wB, the corresponding transition will be
3(4, w)=B.Also, for each production 4 - y , we can introduce the transition 8(4,w) =g,
where ¢, isthe final state. The transitions obtained from grammar G is shown using the following
table:

Productions Transitions

S - 5(S, 01 = 4
A - 8(4, 10)=8
B .- 8B, 0)=4

B ey 5(B, 1)=g,

The FA cotresponding to the transitions obtained is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

So,the DFA M =(0.%, 8, q,, 4) where
O={5, 4, 8,4, %> 9%} , Z={08
g, =5, 4={4,}
& is as obtained from the above table.
The additional vertices introduced are g,,4,, ;-

Example 2 : Constructa DFAto accept the language generated by the following grammar .
S —> aA| ¢
A - aAlbB| ¢
B - bB| ¢

Solution :

Note that for each production of the form 4> wB, the corresponding transition will be
8(4,w) = B.Also , for each production 4 -» w , wecanintroduce the transition 8(4,w) =¢,

where ¢, is the final state. The transitions obtained from grammar G is shown using the following ‘
table:

Productions Transitions
8(S,0)=4
S is the final state
8(d,a)=4
8(A,b)=B
Alisthe final state
5(B,b)=B
B is the final state.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For each transition of the form 4 —y ¢, make A as the final state.
"The FA corresponding to the transitions obtained is shown below :

So, the DFA M =(0.3, 8, g,, 4) where
Q=1{S. 4,8} ,S={a,b}
g, =8, d={S, 4, B}
Sisas obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let 1 =(0Q.=,58,9,,4) beafinite automaton. If L. is the regular language accepted
by FA, then there exists a right linear grammar G=(V, T, P, 8) so that L = L{G).

Proof : Let & =(0,2,5,9,,4) beafinite automata accepting L where

O ={q6:q1+-q5}

E={a,,ay,..a,}
Aregular grammar G = (V, T, P, S) can be constructed where

V= 90> G5 m-qn}

=X

S=g,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form 8(g,, @) =¢;

the corresponding production defined will be ¢, — agq,

Step 2: If ¢ e 4 i.e., ifqis the final state in FA, then introduce the production
g —>r&

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS
%
After going through this chapter, you should be able to understand :

o RegularGrammar
+ Equivalence between Regular Grammar and FA
o [Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S)is said to be regular grammar iff the grammar is
right linear or left linear,
A grammar G is said to be right linear if all the productions are of the form

A->wB and/or A >w where 4, BeV and 5 7"

Agrammar G is said to be left linear if all the productions are of the form
A—>Bw and/or A >w where 4, BeV and 7.

Example 1: The grammar

S - aaB | bbA | ¢

A - aAlb

B -y bB] ai &
is aright linear grammar, Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol on R. H. S,
Example 2:

The grammar

S - Baa|Abb| ¢

A - Aalb

B - Bbla]e
isaleft linear grammar. Note that « and string of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left most symbol onL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For cach transition of the form 4 —y¢, make Aasthe ﬁnai state.
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(Q.3, 8, g,, 4) where
O={S, 4B}, X={a,b}
g =S8, 4d={S, 4, B}
§isas obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : et i = (Q,2,6,9,,4) beafinite automaton. If L. is the regular language accepted
by FA, then there exists a right linear grammar G=(V, T, P, 8) so that L = L(G).

Proof : Let M =(0,2,5,9,,4) beafinite automata accepting L where

O ={q06:q1»-qn}
Z={a.,ay,..a,}
Aregular grammar G= (V, T, P, S) can be constructed where

V={qy a9}

T=%

S=gq,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form (g, @) =¢ ;

the corresponding production defined will be ¢, — ag,

Step 2. If g e 4 i.e,, ifqis the final state in FA, then introduce the production
g —>e

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, S) issaid to be a CFG if the productions of G are of the form :

A—>a whereae(VuT)*
The right hand side of a CFG isnot restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from 0to o i.e., 0 < | o | <.

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG'’s.

Example 1: Considerthe grammar G = (¥, T, P, S) having productions :
S — aSa | bSh| €. Check the productions and find the language generated.

Solution :
Let P, :S — aSa (RHSisterminal variable terminal)
P, : § — bSh (RHSisterminal variable terminal)
P,: S - ¢ (RHSisnullstring)
Since, all productions are of the form 4 — «, where @ e(V U T') * ,hence ¢ isaCFG

FORMAL LANGUAGES AND AUTOMATA THEORY

So, the final grammar to generate the language L= { w|n,(w) =n, (w)} sG=(V,T,P,S)
where
={S} , T ={ab}
= { So>¢e
S— aSb
S—> bSa
S§— 5§
} S isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

fG=W,T,P,S)isaCFGand w € L(G) then a derivation § =>w is called leftmost

derivation if and only if all steps involved in derivation have leftmost variable replacement only.

Rightmost derivation :
IfG=W,T,P,S) isaCFGand w ¢ L(G), thenaderivation § =>w is called rightmost

derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar S — § + S| S * 5| a|b. Find leftimost and rightmost
derivations forstring y = g * g + b.

Solution :

Leftmostderivation fory = g*g 4+ %
Ll (Usings — 5*§)
i *s (The first left hand symbolisa, sousing § —)
=atS+S (Using § —» § + §,inordertoget g + 5)
=a*a+Ss (Second symbol from theleftisa, so using § — a)

=a*a+b (The last symbol from the lefiis b, sousing § —»)

FORMAL LANGUAGES AND AUTOMATA THEORY

Rightmost derivation for w = g * g + b
S8 (Usings - §*5)

o §*S+§ (Since, in the above sentential form second symbol from the right is * so,

we can not use § — a|b. Therefore, weuse § — S+ §)
?S*S+b (Using § —)
:;‘:'S*acb (Using § —» a)

?a*a+b (Using § — a)

Example 2 : ConsideraCFG S — b4|aB, 4 — aS|addja, B —> bS|aBB|b . Find
leftmost and rightmost derivations for v = agabbabbba -

Solution :

Leftmost derivation for v - ggabbabbba :

S = aB (Using § — aB to generate first symbol of w)
aaBB (Since, second symbol is a,soweuse B —» aBB)
aaaBBB (Since, third symbol is a.soweuse B — aBB)
aaabBB (Since fourth symbol is b, soweuse B — b)
aaabbB (Since, fifth symbolisb,soweuse B —» b)

-> aaabbaBB (Since, sixth symbol isa, soweuse B8 — aBB)
aaabbabB (Since, seventh symbol is b,soweuse B —)
aaabbabbS (Since, eighth symbol is b, soweuse B — bS)
aaabbabbbA (Since, ninth symbol is b, sowe use § —» h4)
aaabbabbba (Since, the tenth symbolisa,sousing 4 — a)

Rightmost derivation for v = gaabbabbba
S = aB (Using § — aB to generate first symbol of w)

= aaBB (We need a as the rightmost symbol and second symbol from the left side, so we
use B — aBB)

aaBbS (Weneed aas rightmost symbol and this is obtained from Aonly, weuse B — 5S)

aaBbbA (Using S — b4)

aaBbba (Using 4 — a)

aaaBBbba (We need b as the fourth symbol from the right)

aaaBbbba (Using B — b)

aaabShbba (Using B —» bS)

4

=
=
=

R’

FORMAL LANGUAGES AND AUTOMATA THEORY

Figure (c) Parse tree for y = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows.

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
A4 =* Aa.Inotherwords, in the derivation process starting from any non - terminal A, if a sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A - production

oftheform A—Ax|Aayda; Aa,\B\B, | By B
where g,'s do not start with A. Then the A productions can be replaced by
A B A BA |BA o By A
A a4 a4 |z A

Note that «,'s do not start with 4t.

Example 1 : Eliminate left recursion from the following grammar
E—- E+T|T
T—T*F|F
F—»(E) |id

FORMAL LANGUAGES AND AUTOMATA THEORY

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i.e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any production as x —» ¥ where X and Y are non - terminals.
3. If e isnotinthe language L then there need not be the production x —»e.
We see the reduction of grammar as shown below :

Reduced grammar

useless symbols e productions unit productions

Removal of Elimination of J Removal of

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S=>'axf="w

Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of
terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 5.5.1 :letG=(V, T, P, S)beaCFG We can find an equivalent grammar
G, = (V,,T;,P,,S) suchthatforeachAin (V;UT,) there exists o and £ in (FUT))* and x in

T* forwhich S =" adfg =" x.

FORMAL LANGUAGES AND AUTOMATA THEORY

P T,

S » a|BblAa a.b
A-»aB a,b
B alAa] ab

Theresulting grammar G, =(V,, 7,,P,,S) where
= {S,A,B}
= {ab}
= {
S - a|BbjaA
A < aB
B - alAa
} S isthe start symbol
such that each symbol Xin (¥, w 7,) hasaderivation ofthe form §=" axg =" w.

5.5.2 Eliminating < - productions

Aproduction of the form 4 —» « is undesirable ina CFG unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of - productions. Such e - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T,P, S)beaCFG. A production in P of the form

A—> e

iscalledan e - production or NULL production. After applying the production the variable A is
erased. For each Ain V, if there is a derivation of the form

A4=" e
then A isa nullable variable.
Example : Consider the grammar
S = ABCa|bD
A Y BC|b
B

- bl e

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Construction of productions P, . Addanon e- productioninPto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productions to P, .

Productions Resulting productions (7,)

S BAAB S -» BAAB|AAB |BAB|BAA|
AB|BB|BA|AA|A|B

A 0A2 A - 0A2[02

A . 2A0 A - 2A0]20

B AB B - AB|B|A g

’[g 1B B 1B]1 |

We can delete the productions of the form A —» A.In p, , the production B -» B canbe
deleted and the final grammar obtained after eliminating ¢ -productions is shown below.

The grammar G, = (V,,T;,P,,S) where

v, = {S,A,B,C.D}

T {ab,c,d}

P, {S > BAAB|AAB|BAB |BAA|AB|BB|BA|AA|A|B

A 5 0A2]|02[2A0]20
B » AB|A|1B]|1
} S isthe start symbol

5.5.3 Eliminating unit productions
Consider the production 4 — 8. The left hand side of the production and right hand side ofthe
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : LetG=(V,T,P,S)beaCFG. Any production in G of the form

A—>B
where A, p ey isaunit production,

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

FORMAL LANGUAGES AND AUTOMATA THEORY

In a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productionsina CFGresulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —s Non - terminal Non - terminal
Non - terminal —» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)beaCFG The grammar G is said to be in CNF if all productions are
ofthe form
A B BC
or
A -
where A,Band CeV andaeT.
Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. If there are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be aterminal.

Theorem 5.6.1 : Let G=(V, T, P, S) be a CFG which generates context free language
without <. We can find an equivalent context free grammar G, =(V.T ,P,,S) in CNF such that

L(G)=L(G,) i.e., all productionsin G, are of the form

A - BC
or
A -

FORMAL LANGUAGES AND AUTOMATA THEORY

Thus, from (7), (8) and (9), the resultant grammar becomes :
SV, S|V, |alb
V> -
V,= [
Vi — SV,
v, - SV,
v,-»1
Ve—]

Now, in the resultant grammar (C), following is the production which is not in the form of CNE:
EIAAA

We can write this production as :
SV, V,
Vs = ViV

Thus, from (10) and (11), the resultant grammar becomes :
S >V SW,V,|db
V-
V,—[
v, >V, V,
v, sV,
v, > 5V,
| 1)
V>]

Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal — one terminal. Any number of non - terminals

Example :
isin GNF
isin GNF

FORMAL LANGUAGES AND AUTOMATA THEORY

From the subtree shown in figure (b) , we get ¢ :', aaSe O § s 2 Sz, andconsidering

the subtree shown in ﬁgure(c),' Weget §osqg OF § Rl 7

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). S0, §=z! 8z} = z,'z, 2}

Therefore, string z can be written as zyz,z,y for some uand y substrings of z. The substrings
z, and z, can be pumped as many times as we like. Replacing z;, z; and z, by v, wand x

respectively, we get z=uvwxy and g => w'wx'y forsomei=0,1,2,
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step1:

Supposethat £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step 2:

Chooseastring xc L such that {x| =1 using pumping lemma principle write z=uvwxy.

Step 3:

Find suitable i so that wv 'wx ‘yz 1. . Thisisacontradiction. So L isnot context - free.

FORMAL LANGUAGES AND AUTOMATA THEORY

Case 2:

vea* and xc.*. Let ,_,» and pg=n!. Pumping v and x, (¢+1) times, we get :
2= uv"“wx"”y -

Inz',no.ofa's willbe n-p+nl+ p=nlyn,

No.of b's in Z' will remain n! +n. Hence, no. ofa's=no. of b's in Z'.

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and

Intersection

1
2
3. Kleene Closure (Context-free languages may or may not close under following properties)
4
5

Complementation

Theorem 5.8.1 :If 7, and L, aretwo CFLs, then unionof Z, and L, denoted by L; + L,
or [, U L, isalsoa CFL.

Proof :

Let CFG G, = (¥,,T,,P,S) generates L; and CFG G, = (V,,T,,P,S) generates L,

and G=(V,T, P,S) generates L = L; + L,.

We construct G as follows :

Step 1: Rename the variables of CFG G,

Ifv, = {S, 4, B,..., X} ,thentherenamed variables are {S;, 4;, B;,...X;} . Thismodification
should be reflected in productions also.

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Rename the variables of CFG G,

If ¥, ={S,4,B,..X}, then the renamed variables are {S;, 4y, B,....X5}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G; and G, to get productions of G as follows :

S — S§;|S,,where S, and §, are starting symbols of grammars G; and G, respectively and
S) -productions and S, - productions remain unchanged.

r="rv7,,
V ={S\,4,,B,,. X} U{S,,4,,B,,..X,}

Since, all productions of Gy and G, including § — S; | S, are in context-free form, so
GisaCFG.

Language generated by G :
L(G) =Language generated from (S; or S5)
=Language generated from S, or language generated from S,
= L(Gy) or L(G) (Since, §; and §, are starting symbols of G; and G, respectively.)
= I or L, (Since, G, produces L) and G, produces L; .)
=L+

Hence, statement of the theorem is proved.

Example : Considerthe CFGs S — aSh|ab and S —» ¢Sdd | edd , which generate
languages I; and L, respectively. Construct grammar for L = Ly + L.

Solution :

Let G, generates [; and G, generates [, and G = (V,T, P,S) generates L = I + L.

Renaming the variables of G, and G,, we get

v, ={S,} and ¥, ={S,}, where §; - productions are $; — aSb | ab, and
S, - productions are S, — cS,dd | cdd

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DPDA
6.1 INTRODUCTION

APDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata, Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). It means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automata is shown in below figure. It consists of a finite tape, areading
head, which reads from the tape, a stack memory operating in LIFO fashion.

\e— Input Tape

Finite State Control — Stack

FIGURE : Model of Pushdown Automata

FORMAL LANGUAGES AND AUTOMATA THEORY

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by 5 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q,2,1",8, ¢,,Z,.F) , Where
1. Q isfinite and nonempty set of states,
2. 3 isinputalphabet,
3. T isfinite and nonempty set of pushdown symbols,
4. g isthe transition function which maps
From Q % (T U {g}) x T to (finite subset of) O x I'¥,
5. g, & Q,isthestarting state,
6. Z, e I',isthestarting (top most or initial) stack symbol, and
7. F c Q,isthesetoffinal states.

6.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite number of choices of moves in each situation.
The move will be of two types :

1. Tnthefirsttype of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

In the second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. It is also known asan e -move.

Mathematically first type of move is defined as follows.

5(9,a,2) ={(pya)(p2:@3) Pys@,)} , Where for 1 < i < n,q,p, are states in

Q,ack, Zel,and ael*.
PDA reads an input symbol a and one stack symbol Z in present state ¢ and for any value(s) of
i, enters state p, , replaces stack symbol Z by string &, I * , and head isadvanced onecell on
the tape. Now, the leftmost symbol of string ¢, is assumed as the topmost symbol on the stack.
Mathematically second type of move is defined as follows.

8(g,6,Z2) = {(p1: @ (P2:@3)ser(Prs @)} 5 where for 1 < i < n, g, p, are states in

Q,acl, Zel,and a,eT *.

FORMAL LANGUAGES AND AUTOMATA THEORY

PDA does not read input symbol but it reads stack symbol Z in present state g and for any
value(s) of #, enters state p,, replaces stack symbol Z by string a, € I' *, and head is not

advanced on the tape. Now, the lefimost symbol of string «, is assumed as the topmost symbol
on the stack.

The string «, be any one of the following :

l. @, =e inthiscase the topmost stack symbol Z,,, iserased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure ().

5

FIGURE(a): Move of PDA
2. a, = c,c e I ,inthis case the topmost stack symbol Z,,, is replaced by symbol c. It is

shown in figure(b)

)

FIGURE(b): Move of PDA
3. @, =c¢,c;...c, »inthis case the topmost stack symbol Z,,, isreplaced by string cic;,. .. c,,-
Itis shown in figure(c).

FORMAL LANGUAGES AND AUTOMATA THEORY

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (02,15, 40, Zy.F) » thenits configuration at a given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So, anID is (¢,x,@) ,where g e Q. xe Z*, a e I'*.

The relation between two consecutive IDs is represented by the sign |—— :
We say (¢,ax,ZB) |57(P»*.@B) if 8 (g, a, Z) contains (p,a), where Z,B,acT*,a
maybenullora €Z, p,g € Q forM

The reflexive and transitive closure of the relation |77 is denoted by |~,&
Properties :
1. If (q,x,a)lr;(p,‘:’,d),whcre ael*xel*, and p,g €Q,thenforall y eZ *.

@9, 25, y.@),
2. If (q.xy,a)l—,c,(p,y,a), where a eT*x,yeZ*, and p,q €Q, then

(‘],x’a')l';T(P,e,a), and

3. If (q,X,d)l%(P,G,ﬁ), where a, Bel*xei*, and p,geQ. then

(¢, xa 7)]{,—(p,e,ﬂ7), where y eI *

FORMAL LANGUAGES AND AUTOMATA THEORY

6.1.5 Acceptance by PDA

Let M'be a PDA, the accepted language is represented by N(M). We defined the acceptance by
PDA in two ways.

1. Let M =(Q,ZT,3, q,,2Z,,F) ,then N(M) is accepted by final state such that

N (M)=(wi(qo.w,Z)5(a €.8) , where ¢ € O, weS*Z,,fel*, and

q; €F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state.

Let M =(Q.2,1.5.9,.Z,.¢) , then N(M) is accepted by empty stack or null stack such

that N (M)= {wi(qy.w.Z,)54 P:c.€), where p € O, w e *}

The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Example : consider a PDA M = ({g,.9,,9,}.{a,c}1a,Z;},5.9,Z049,}) shown in
below figure. Check the acceptability of string aacaa.

a, Zy, aZ, a,a, €

c,aa Lo Lo :
8 OERoEAN gy

a,a,aa
FIGURE : PDA accepting {a"ca":n=>1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

Solution :
The transition function § isdefined as follows :

8(q0:a,Z0) = {(q0,9Z,4)} »
8(qq,a,a)={(4,.aa)},
8(gq5¢,a) = {(g),a)} 5
8(q,,a,a) ={(q,€)}, and

3(q,.6,2,) = {(92,Z)}
Following moves are carried out in order to check acceptability of string aacaa :

(g4, aacaa ,ZO)‘—(qo,acaa .aZgy)
|—(q,,,cua vaaZ)
|—(ql ,aa,aaZ ;)

l_(qlva'azo)

I_(QUE’ZO)

l—(‘lz’e»zo)

Hence, (¢,,aacaa ,lo)iﬁ(qz,e,lo) .
Therefore, the string aacaa is accepted by 7.

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1 : Obtain 2 PDA to accept the language L(M) = { wCw"| w e (a+b)*} where

R is reverse of W.
Solution:

Itis clear from the language L(M) = { wCw®} thatif v =apb

then reverse of w denoted by & willbe % _ pp, and the language L willbe y,cy2
i.e., abbCbba which is a string of palindrome.

FORMAL LANGUAGES AND AUTOMATA THEORY

To accept the string :

The sequence of moves made by the PDA for the string aabCbaa is shown below.
Initial ID

(g¢> aabChaa, Z,) = (g0, abCbaa, aZ,)
- (99, bCbhaa, aaZ;)
|- (90, Cbaa, baaZ;)
|- (g1,baa baaZ,)
= (q1,aa,aaZ,)
3 (91,a,aZ,)
|- (91-6.2,)
o (92 & Z)
(Final Configuration)

Since g, is the final state and input string is € in the final configuration, the string aabCbaa
is accepted by the PDA .

To reject the string :
The sequence of moves made by the PDA for the string aabCbab is shown below .
Initial [D
(g9 aabCbab, Z;) (qy. abCbab, aZ,)
(g0, bCbhab, aaZ,)
(90, Chab, baaZy)
(q,, bab, baaZy)
(q;, ab, aaZy)
(41, b, azy)
(Final Configuration)
Since the transition &(q,, b, a) isnot defined, the string aabChab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L = { a" 4" n > 1} by a final state.

Solution :

The machine should accept n number of a's followed by n number of b's.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata.

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § which maps from
0 x (2 U {€}) x T to (finite subset of) O x I' *. Anondeterministic PDA accepts an input if
asequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({g,},{a.b}.{a,b,Z},0.9,,Z.¢), for the

language I, = {a"b" : n > 1} ;where § is defined as follows :
3(qs:€,Z) = {(qo, ab),(qq,aZb)} (Two possiblemoves forinput e onthetape and Zon the stack),

é (‘lo,a,a) = {(Qo’e)} ’ and é (QD!b’b) = {(qu;e)}
Check whether string w = aabb is accepted ornot ?
Solution : Initial configuration is (g,,aabb, Z) . Following moves are possible :

(o, aabb,ab) ~> (go,abb,b) —» &
(qa,aabb,Z){
(go,aabb,aZb) ——w (q,,abb,Zb)

(go.abb,abb) (go-abb.aZbb)

(g, bb,bb) (go,bb, Zbb)

(QO)bxb)
(gy.bb,abbb) (qo,bb,aZbbb)
(90,€:€)

] o
Hence, w = aabbis accepted by empty stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

One thing is noticeable here that only one move sequence leads to empty store and other don't.
In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has af most one choice to move for certain

input. APDA M =(Q,%,T,6,49,,Z,, F) isdeterministic if it satisfies both the conditions given

as follows :

1. Foranygq € Q,ae(Tw {e})' ,and Z €I, & (g, a, Z) has at most one choice of move.

2. Forany ge Q,and 7z e, if 8(q,€ 2) is defined i.e. 8(q, ¢ Z) # ¢, then
8(g,a,Z) = ¢ forall g ¢ &

Example : Consider a DPDA M = ({g4,q,},{a.c},{@,Zy},6,94.Zy,¢) accepting the

language {a"ca" :n >1}.where § is defined as follows :

6(g0,a,Zy) = {(qy,9Z,)}
6(qq,a.a) ={(gp,aa)},
5(‘10»0»0) = {(ql’a)};
8(qy,a,a) = {(g,€)}, and 8(g;,€,Zy) = {(g),€)}
Check whether the string w = aacaa is accepted by empty stack or not ?
Solution :
We see that in each transition DPDA has at most one move. Initial configuration is

(qq,aacaa, Z,) . Following are the possible moves.
(qq,aacaa ,Zy) —> (qy,acaa,aZ,) —» (gy,caa,aaZy) —> (qy,aa,aaZ,)
{

(QIsE’G) = (qhe’zo) & (QDavaO)
Hence, the string w = aacaa is accepted by empty stack.

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

For example, language 7, ={ww *:w € (a U b) *} isaccepted by nondeterministic PDA,
cannot by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.
So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepts its input by consuming it and then it enters
in the final state.

Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0,,2,T,,8,,p,,Z,,4) isaPDA accepting CFL L by empty store then there

existsPDA M, =(0,,2.13,8,, p1,Z,,{q,}) whichaccepts L by final state.

Proof :
First we construct PDA M, based onPDA M, and then we prove that both accept L.

Step 1 : Construction of PDA M, based on given PDA A,

z issame for both PDAs. We add a new initial state and a new final state with given PDA 1, .

So, 0, =0, Vi{p,vgq,}

The stack alphabet T, of PDA s, contains one additional symbol Z, with T, .

So, I, =T, U {Z,}
The transition function &, containsall the transitions of given PDA 1, and two additional transitions
(R, and Ry) asdefined as follows:

Ry :6,(p2i€,Z,) ={(p1,2,2,)},

R,:6,(q,a,2)=6,(q,a,Z) forall (¢,e,Z)in Q, x (£ U {e}) x T,

(the original transitions of A,), and
Ry:6,(9,€,Z,)={(q,,€)} forall g € Q,

Bythe R, , &, moves fromitsinitial ID (p,,e,Z,) totheinitial ID of », By R, , A, usesall the
transitions of u, afterreaching the initial ID of », and by using Ry », reaches the final state ¢ §if

FORMAL LANGUAGES AND AUTOMATA THEORY

The block diagram is shown in below figure.

‘a €,2,,2, 2, €,Z,,a

FIGURE : Block diagram of PDA u,

Step 2 : The language accepted by PDA M, and PDA M,
The behaviorsof A, and M, are same except the two by e -movesdefinedby Ry and Rj.
Let string w e [andaccepted by A, then

(p.,w,Z,)lM'—‘(q,e,e) where ¢ € 0, (Result 1)

For M,,theinitial IDis (p,,w,Z,) and it can be written as (p,,ewe2,). So,
(P2 €& Zy) |5 (p1s,21Z,) (Thisinitial IDof M,)

| (@.€.22) (by R, and Result 1)

|- @,,6.@) aeT; By Ry)
Thus, if M, accepts w, then M, also acceptsit.

Itmeans L(M,)c L(M,) (Result 2)
Letstring w ¢ L and accepted by PDA M, , then

(preweZ,) ‘E (pwZ,Z,) By Ry) (Result 3)

iz (@.6.2,) By R,) (Result 4)

1ﬁ; (q[9esa) a Er; (By R3)
Note : The Result 3 is the initial ID of M,. The Result 4 shows the empty store for M, if
symbol Z, is not there.

FORMAL LANGUAGES AND AUTOMATA THEORY

For M,,theinitial IDis (p,, w,Z,)

So, (P1sw,Z,) 577 (9,€,€) ,where ¢ € Q, (ByResult3 and Result4) Thus, if M, accepts
w,then M, also accepts it.
It means, L(M,) < L(M,) (Result 5)

Therefore, L = L(M,)= L(M,) (From Result 2 and Result 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, = ({g, }, {a.b}. {a.b, S}, 8,4,.5,4) which
accepts the language 7 = {a"p" : n > 1} by empty store, where § is defined as follows :
6(q9,€,8)={(qp,ab), (g,,aSb)} (Two possible moves),
8(g0,a,a) ={(g,,€)} , and & (qq,b,b) = {(g,,€)}

Construct an equivalent PDA M, which accepts L in final state and check whether string
w = aabb is accepted or not ?

Solution : Following moves are carried out by PDA M, in order to accept yw = gabb :

(gq,aabb,S)]— (qq,aabb,aSbh)

]— (q,.abb, Sb)

|—(g0-abb,abb)

[—(qq, b,)
|—(a0.0.5)

I_ (gy€,€)

Hence, (49,aabb,5) |- (4o, €,€)
Therefore, yw = aabb isacceptedby M,.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Design of TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a fi